Estimate and compute the area of more complex or irregular two- and three-dimensional figures by breaking the figures down into more basic geometric objects. 7MG2.2

110. One-inch cubes are stacked as shown in the drawing below.

What is the total surface area?

- **A** 19 in.^2
- **B** 29 in.²
- \mathbf{C} 32 in.²
- **D** 38 in.^2

- 111. In the figure shown above, all the corners form right angles. What is the area of the figure in square units?
 - **A** 67
 - **B** 73
 - **C** 78
 - **D** 91

112. What is the area of the shaded region in the figure shown below?

- $\mathbf{A} \quad 4 \text{ cm}^2$
- \mathbf{B} 6 cm²
- $C = 8 \text{ cm}^2$
- **D** 16 cm^2

113. A right triangle is removed from a rectangle as shown in the figure below. Find the area of the remaining part of the rectangle.

- **A** 40 in.^2
- **C** 48 in.^2
- **B** 44 in.²
- **D** 52 in.^2

114. In the figure below, every angle is a right angle.

What is the area, in square units, of the figure?

- **A** 96
- C 120
- **B** 108
- **D** 144